
BELL & GOSSETT

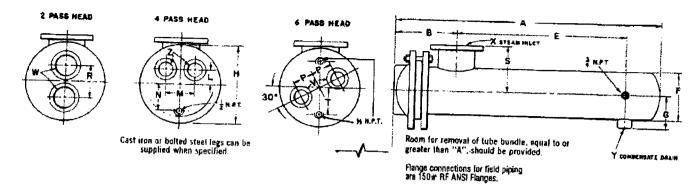
8"Series Type "SU" Heat Exchangers

"U" Tube Design

JOB	8 & G REPRESENTATIVE
UNIT TAG NO.	ORDER NO
CONTRACTOR	APPROVED BY DATE DATE

DESCRIPTION

B&G "SU" Heat Exchangers are of the shell and tube type. The tube bundle is of "U" bend construction with tube ends expanded into a stationary tube sheet. This construction permits ample expansion or contraction for wide temperature variations. A fluid entering the tubes is heated by steam condensing in the single pass shell. Tube spacers properly support and space each tube for maximum efficiency in steam condensing and drainage.


Standard "SU" Heat Exchangers are constructed according to ASME requirements for pressures and temperature. A Manufacturers' Data Report for Pressure Vessels, Form No. U-1, as required by the provisions of the ASME Code Rules, is furnished with each unit upon request. This form is signed by an authorized inspector, holding a National Board Commission, and who is employed by an authorized inspection agency, certifying that construction conforms to the latest ASME Code for pressure vessels. The ASME "U" symbol is stamped on each vessel. In addition, each unit is registered with the National Board of Boiler and Pressure Vessel Inspectors.

RECOMMENDED "SU" HEAT EXCHANGER			APPROVALS
MODEL NO. 3			
HEATING SURFACE (SQ. FT.)	OPERATIN	IG DATA	
	TUBE SIDE	SHELL SIDE	
1. Steam Pressure			
2. Fluid Circulated			
3. Total Flow (Expressed in GPM, GPH, or lbs./hr.)			
4. Temperature In/Out			
5. Heat Load BTU/hr,			
6. Pressure Drop (Maximum)			
7. Fouling Factor or Percentage of Additional Surface_			i
Note: Following applies only for fluids other than water.			
8. Specific Gravity			
9. Specific Heat			
10. Latent Heat			
11. Viscosity**			
12. Thermal Conductivity			

^{**}Expressed in Proper Units and Temperature such as centipoises @ °F.

8" Series TYPE "SU" HEAT EXCHANGERS ("U" Tube Design)

L	MUN TING	BER		_	HEA	DI	uens)	ONS IN	INCH	ES				D	MEN	SIONS	5 180 1	NCHE	*		T	HEATIN		Approx
2 Pass.			2 Pa	_			4 Pass			6 P2	155						6 Pas		-			SURFAC SQ. FT.	Έ	Shipe.
	4 Pass	6 Pass	W	Я	L	M	N.	Z	P	T	٧	A	8	E	F	G	Н	s	X	l v	2 Pass	4 Pass	C D	-
SU82-2	SU\$2-4	\$U82-6	3 NP7	5	2]4	31/4	2 NPT	3	31/4	2 NPT	299/8	9%	13	83%	ATE/	121/1	~	1		<u> </u>	 		(lbs.
5U83-2	SU83-4	9-E8U2	3 NPT	5	7	1	3!4	2 NPT	3	3%	2 NPT	413%	_	25		_			2 NPT		15	15	12	112
SU14-2	SU14-4	SUM-6	19ME	5	2	1	31/2	2 NPT	-	31/4	2 NPT		9%			_	121/2		254 NPT	INFT	2.3	23	19	148
SU85-2	SU85-4	SU85-6	3 NP1	΄.	-	1-	31/5		-	-		£33%	3%	17	8%	4"716	1277	6/4	3 NPT	I NPT	32	32	26	184
5U86-2	SU86-4	5-98 UZ		÷	-	-	-	2 NPT	_	31/4	2 NPT	651/4	91/4	49	81%	413/16	121/2	B13/16	4 FLG	1 NPF	41	41	33	220
			3 NPT	<u>,</u>	2	4	3%	2 NPT	3	3%	2 NPT	77%	944	ől	814	5%	121/2	#F√tk	4 FLG	I'M NPT	49	49	41	-
1187-7	SU87-4	SU87-6	3 MPT	5	2	4	315	2 NPE	3	31/4	2 NPT	89%	9%	73	8%		1255			1% NPT				256
W88-2	2086-¢	3-88 UZ	3 MPT	5	7	+	314	2 NP1	3	3%	2 NPI	101%	9%	**	-		_				58	58	48	292
U89-2	SU89-4	SU89-6	3 NPT	5	5	-	3%	2 MPT	_	-				85	_		12%	81¥/16	6 FLG	11/4 MPT	67	67	55	328
					-		277	A MEI	J	3%	2 NPT	11335	94	37 (l Byal	536	1255	84/14	6 FLG	1% NPT	75	75	£2	364

Dimensions are subject to change, if exact dimensions are needed for layout, write for certified prints.

DESIGN PRESSURES-ASME CONSTRUCTION CAST IRON & BRASS UNITS

	DESIGN P	RESSURES.		DECIGN TEACH	
TUBE :	SIDE	SHEL	L SIDE	DESIGN TEMP	
DESIGN	TEST	DESIGN	TEST	CAST IRON	BRASS
150 psi	300 psi	150 psi	300 psi	375 F	300 F

^{*}For design pressures and temperatures higher than shown or materials of construction not shown, consult B & G Representative.

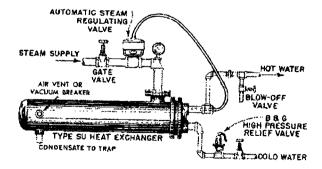
MATERIALS .

PART	STANDARD CAST IRON UNIT 2,4 & 6 Pass	BRASS UNIT				
Head Shell Tube Sheet Tubing	Cast Iron Steel Steel	Cast Brass Steel Rolled Naval Brass				
Tube Supports Nuts & Bolts	Copper ¾" O.D. Steel Steel	Copper ¾" O.D. Steel Steel				

TYPICAL INSTALLATION OF "SU" HEAT EXCHANGER

Steam hammer can cause serious damage to the tubes of any Heat Exchanger. A careful consideration of the following points before an installation is made can prevent costly repairs which may be caused by steam hammer.

(a) A vacuum breaker and/or vent, should be used in accordance with the type of steam system installed.


(b) The proper trap for the steam system installed should be used.

(c) The trap and the condensate return line to the trap should be properly sized for the total capacity of the convertor.

(d) The trap should be sized for the pressure at the trap, not the inlet pressure to the steam controller.

CAUTION: A properly sized relief valve must be installed on the heated water side to protect heat exchangers from possible damage due to volumetric

> For further information, contact ITT Bell & Gossett Heat Transfer Products, 175 Standard Parkway. Cheeklowaga, NY 14227, Phone: (716) 862-4171 Facsimile: (716) 862-4176.

